
University of Montenegro

Faculty of electrical engineering

Course: Automated construction of electrical circuits and systems

Theme: Switch controlled LED

Students:

Milan Rešetar 8/18

Anđela Kandić 11/18

Date and place:

25/11/2018,Podgorica

Contents:

 Summary

 Problem description

 Hardware/software solution

 Verification on board

 Link for the video

 Literature

Abstract:

In this project we will show the working principle of a stepping automate with a

debounce button. Problem and its solution will be explained in details in the

following text,including verification on FPGA board.

Problem description

We are using DE2-70 Altera FPGA board to simulate a stepping automate.The

purpose of this circuit is the keep LED on for the certain amount of time.To start

the system we have to hold the button(KEY0) for at least 0.6 seconds.We use

SW[0] to control the amount of time the LED will be on.If SW[0] is toggled on the

LED will be active for 60 seconds and if it is off,then for 30 seconds.We also have a

reset switch(SW[1]) used to ’control’ the button,when SW[1] is active the system

cannot be started.

Hardware/software solution

High-level design

STEPENIŠNI
AUTOMAT

 reset

 sw0

 button

 led

As software solution Quartus version 9.1 is used.The code and block diagram is

presented in VHDL.

Block diagram:

The code:

Divider

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity divider is

generic(N:integer:=10000000);

port

(clk: in std_logic;

clk_new : out std_logic);

end divider;

architecture clk_div_behav of divider is

signal clk_temp : std_logic;

signal temp : integer range 0 to N-1;

begin

process(clk, clk_temp)

begin

if(clk'event and clk='0') then

if(temp=N/2-1)then

temp<=temp+1;

clk_temp<='1';

elsif (temp=N-1) then

temp <= 0;

clk_temp<='0';

else

temp<=temp+1;

end if;

clk_new<=clk_temp;

end if;

end process;

end clk_div_behav;

Debouncer

library ieee;

use ieee.std_logic_1164.all;

entity debouncer is

port (clock, reset ,button : in std_logic;

output : out std_logic);

end debouncer;

architecture arch of debouncer is

constant count_max : integer := 3;

constant button_active : std_logic := '0';

signal count : integer := 0 ;

type state_type is (passive, waiting);

signal state : state_type :=passive;

begin

process (reset,clock)

begin

if(reset ='1') then

state <= passive;

output<= '0';

elsif (rising_edge(clock)) then

case (state) is

when passive =>

if(button = button_active) then

state <= waiting;

count <= count+1;

else

state <= passive;

end if;

output <= '0';

when waiting =>

if(count =count_max) then

if(button ='1') then

count <= 0;

elsif(button ='0') then

if(button = button_active) then

output<='1';

end if;

state <= passive;

elsif (button ='1') then

count <= 0;

else

count <= count + 1;

end if;

end case;

end if;

end process;

end architecture;

Decission

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity decission is

port (sw0 : in std_logic;

interval : out integer) ;

end entity;

architecture arch of decission is

begin

with sw0 select

interval <= 150 when '0',-- za 30 sekundi

 300 when '1'; -- za 60 sekundi

end architecture;

Monostabil

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity monostabil is

port(clock,activate:in bit;

delay: in integer;

q :out bit);

end monostabil;

architecture arch of monostabil is

begin

process(clock)

variable count :integer :=0;

variable activate_was :bit ;

begin

if(clock 'event and clock='1')then

if activate='1' and activate_was='0' then

count:=delay;

activate_was:='1';

elsif count=0 then

count:=0;

else

count:=count-1;

end if;

if activate='0' then

activate_was:='0';

end if;

end if;

if count =0 then

q<='0';

else

q<='1';

end if;

end process;

end arch;

As hardware solution we have used FPGA board DE2-70 Altera(Cyclone II).

Signals and their pins:

 clk-PIN_AD15

 reset-PIN_AB26

 sw0-PIN_AA23

 button-PIN_T29

Verification on board

Verification has been sucesfully executed as shown in the link below.

Link for the video

https://www.youtube.com/watch?v=8GxUDEnXsIY

Literature

-Radovan D.Stojanović-AUTOMATIZOVANO PROJEKTOVANJE DIGITALNIH SISTEMA

(VHDL i FPGA)

-DE2-70 User manual version 1.08

